Entire Self-similar Solutions to Lagrangian Mean Curvature Flow

نویسندگان

  • ALBERT CHAU
  • JINGYI CHEN
  • WEIYONG HE
چکیده

Abstract. We consider self-similar solutions to mean curvature evolution of entire Lagrangian graphs. When the Hessian of the potential function u has eigenvalues strictly uniformly between −1 and 1, we show that on the potential level all the shrinking solitons are quadratic polynomials while the expanding solitons are in one-to-one correspondence to functions of homogenous of degree 2 with the Hessian bound. We also show that if the initial potential function is cone-like at infinity then the scaled flow converges to an expanding soliton as time goes to infinity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigidity of entire self-shrinking solutions to curvature flows

We show (a) that any entire graphic self-shrinking solution to the Lagrangian mean curvature flow in C with the Euclidean metric is flat; (b) that any space-like entire graphic self-shrinking solution to the Lagrangian mean curvature flow in C with the pseudo-Euclidean metric is flat if the Hessian of the potential is bounded below quadratically; and (c) the Hermitian counterpart of (b) for the...

متن کامل

Translating Solutions to Lagrangian Mean Curvature Flow

We prove some non-existence theorems for translating solutions to Lagrangian mean curvature flow. More precisely, we show that translating solutions with an L bound on the mean curvature are planes and that almost-calibrated translating solutions which are static are also planes. Recent work of D. Joyce, Y.-I. Lee, and M.-P. Tsui, shows that these conditions are optimal.

متن کامل

Constructing Soliton Solutions of Geometric Flows by Separation of Variables

This note surveys and compares results in [12] and [21, 22] on the separation of variables construction for soliton solutions of curvature equations including the Kähler-Ricci flow and the Lagrangian mean curvature flow. In the last section, we propose some new generalizations in the Lagrangian mean curvature flow case.

متن کامل

Lagrangian Mean Curvature Flow in Pseudo-euclidean Space

We establish the longtime existence and convergence results of the mean curvature flow of entire Lagrangian graphs in pseudo-Euclidean space.

متن کامل

Cyclic and ruled Lagrangian surfaces in complex Euclidean space

We study those Lagrangian surfaces in complex Euclidean space which are foliated by circles or by straight lines. The former, which we call cyclic, come in three types, each one being described by means of, respectively, a planar curve, a Legendrian curve in the 3-sphere or a Legendrian curve in the anti-de Sitter 3-space. We describe ruled Lagrangian surfaces and characterize the cyclic and ru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009